

Nsort: a Parallel Sorting Program
for NUMA and SMP Machines

Version 3.0

August 21, 2000

Chris Nyberg, Ordinal Technology Corp

Charles Koester, Ordinal Technology Corp

Jim Gray, Microsoft Corporation

Copyright © 2000, Ordinal Technology Corp

http://www.ordinal.com

Introduction

Ordinal

TM

 Nsort

TM

 is a high-performance sort program for SGI IRIX, Sun Solaris and HP-UX servers.

Nsort allows its users to realize the full processing potential of their multi-processor, multi-disk Unix

systems for sorting data. Unlike the slow, single-threaded Unix sort utility or other third-party sort

programs that achieve only minor processing parallelism, only Nsort can use tens of processors and

hundreds of disks to quickly sort and merge data.

Nsort utilizes multi-disk Þle systems to read and write Þles at more than 1 gigabyte per second. Since

Nsort uses 64-bit addressing, it can perform a one-pass sort for data sets that Þt in main memory. Two-

pass sorts using temporary Þles can also be performed. Using a two-pass sort, Nsort performed a

terabyte sort in 2.5 hours using 2.3 gigabytes of main memory.

Nsort has the options one Þnds in a full-function commercial sort package. It handles the standard data

types found in scientiÞc and commercial applications. Nsort can summarize Þelds for rollup reporting,

select and edit records, and optionally eliminate duplicate records. File merge and Þle copy operations

are also supported.

This paper describes Nsort's background, presents its performance sorting a terabyte of data, and

compares its performance on an industry-standard benchmark. Nsort performance is presented for Þle

copying and record selection, and sorting with varying numbers of processors, input sizes, key types,

key lengths, numbers of keys and record lengths.

Background

Sorting was one of the Þrst commercial applications for computers and is a classic problem in computer

science [1]. Sorting is commonly used to bring together records with equal keys, or to facilitate later

searching of data. Modern-day sort programs can include or omit records based on key value, reorder

record Þelds, and aggregate Þeld values by key value. For example, many utility and telephone

companies use sorting to bring together service usage records by account number, subtotalling the

service charges in the process.

Sorting is used in data mining applications to Þnd patterns and trends. For example, many web sites

facilitate the processing of billion-record web access logs by sorting the log records, either by requested

page, requestor or time. In retailing, sorts are often used to aggregate data by various categories and

produce rollup and cube reports.

Sorting is also a core utility for database systems in organizing, indexing, and reorganizing data. Pre-

sorting data can dramatically reduce database load times:

¥ Database tables are usually organized in a B-tree with records in key order. Pre-sorted data can be

directly loaded into a table without the database performing its own internal sort at a slow speed.

¥ In data warehouses, fact-table data is summarized by all combinations of its multiple dimensions.

Building these aggregates with a sorting program is usually much more efÞcient than using the data-

base [2].

IBM mainframes have long dominated the commercial sorting world. They combine high bandwidth

disks and main memory systems, fast processors, and sophisticated sorting programs. IBM's DFSORT

TM

and Syncsort

TM

are the premier sorting products on mainframes.

A number of hardware trends, starting in the 1980s, allowed microprocessor-based, multiprocessor Unix

machines to eclipse IBM mainframes in processing power:

¥ Microprocessors with faster and faster clocks were developed. These processors have become both

very fast and relatively inexpensive. They also rely on multiple levels of cache memory to run at full

speed.

¥ Symmetric multiprocessor machines (SMPs) were built to allow multiple processors to work on the

same task.

¥ Non-Uniform Memory Access (NUMA) machines have been developed to get around the bandwidth

limitations of a single memory bus SMP machines.

¥ Main memory prices decreased to the point that multi-gigabyte memories are now standard.

¥ 64-bit addressing was incorporated to allow a single process to exploit large memories.

¥ Commodity disks became cheaper and faster -- indeed, mainframes now use the same disks as other

systems (albeit with a different interface).

¥ Volume managers and RAID storage processors have been developed that the allow the bandwidth of

many disks to be combined as virtual disk devices whose speed is limited only by the raw hardware.

Nsort is designed to take advantage of todayÕs large, multiprocessor Unix systems. It can access Þles

stored on multi-disk devices at high speeds. Nsort has sophisticated buffer management to overlap

computation and I/O. Its multi-threaded code allows multiple processors to be used for one sort. Nsort's

algorithms pay particular attention to processor-cache locality to make the best use of fast

microprocessors. By using 64-bit addressing, Nsort can perform a one-pass sort for very large data sets.

The size limitation for one-pass sorts is the user's budget for main memory, not a 2GB or 4GB barrier

imposed by 32-bit addressing.

For a user, all these are Þne points. The real question is how well does it work? Just how fast is Nsort,

and how does it compare to other sort products? On a standard sort benchmark, Nsort running on an

Origin2000 system is an order of magnitude faster than its competition. In a separate test, Nsort sorted a

terabyte of data in 2.5 hours. The next section describes these results.

MinuteSort

MinuteSort is a standard sorting benchmark [3]. The benchmark measures the number of 100-byte

records that can be sorted in one minute of elapsed time. The input records have 10-byte random keys.

The minute limit includes the time to:

¥ read the input Þle

¥ sort the data

¥ create and write the output Þle

There are two categories for the MinuteSort benchmark: Indy (a custom, Òbenchmark specialÓ sort

program) and Daytona (a commercial, general purpose sort program). The Þrst winner of the Indy

MinuteSort benchmark was AlphaSort [3], a sort program designed to show that RISC processors could

be used for high-performance sorting. It used striped input and output Þles to achieve high-bandwidth

disk i/o - one input Þle and output Þle on each disk. AlphaSort also demonstrated that judicious use of

processor caches is crucial to sort performance. Unfortunately, it's sort algorithm was extremely

dependent on the Þrst few bytes of each key containing evenly distributed values. All sort algorithms

perform best with random data, but AlphaSort's performance would have dropped by two orders of

magnitude if the Þrst four bytes of all keys contained the same value.

Until Nsort in March 1997, there was not an ofÞcial Daytona MinuteSort entry. However on October 1,

1996 Syncsort and DEC announced new sort performance results [4] on an SMP AlphaServer 8400 5/440

using 8GB of main memory and an unspeciÞed number of processors and disks. These results used the

same type of records as MinuteSort (100 bytes, random keys) and were touted as a ÒWorld RecordÓ

compared to Òprevious sorting recordsÓ (presumably AlphaSort):

While the Syncsort/DEC results did not exceed any of the previous Indy MinuteSort results, they far

surpass the speeds of commercial sorts on mainframes.

Nsort is a commercial product that does both one and two-pass sorts, handles many data types and is

not particularly tuned to the MinuteSort benchmark. Over the past few years, we have run the

MinuteSort benchmark to demonstrate the performance of Nsort on moderately large SGI Origin2000

systems.

Syncsort/DEC Results

Time Sort Size

73 seconds 1 GB

378 seconds 5 GB

In 1997 using an Origin2000 conÞguration of 14 195-Mhz R10000 processors, 7GB of main memory, and

49 disk drives, Nsort was able to sort 5.3GB of data in 58 seconds. This one-pass (no temporary Þles) sort

used a single input Þle and single output Þle while setting a new record for Daytona MinuteSort. Nsort

achieved a sort speed (data sorted per elapsed seconds) of 92 MB/sec.

In September 1997, Nsort set a new Daytona MinuteSort record by sorting 7.6GB in 60 seconds using a

two-pass sort. The Origin2000 system included 32 processors, 8GB of main memory, and 121 disks:

¥ 1 system disk

¥ a 60-disk XLV volume for input and output Þles

¥ 60 temporary disks

A two-pass sort requires nearly twice as much work as a one-pass sort, since the data must be read from

disk twice and written to disk twice. With Nsort, this extra work can be handled by adding more

processors and disks.

In September 1999, in a public demonstration at the grand opening of SGIÕs FISC (Financial Industries

Solutions Center) in New York City, Nsort again broke its Daytona MinuteSort record sorting 12

Gigabytes in 58 seconds. The sort speed for this one-pass sort was 206 MB/sec, more than an order of

magnitude faster than Syncsort/DEC's speed of 13.2 MB/sec (5.0GB in 378 seconds). The Origin 2000

system consisted of 64 processors and 6 RAID storage processors, each with 10 disks. The RAID storage

processors provided high-bandwidth disk i/o while simultaneously protecting against single disk

failures.

Terabyte Sort

In order to demonstrate Nsort's ability to sort large data sets, we sorted a terabyte of data (10,000,000,000

100-byte records with random 10-byte keys) in 2.5 hours. The Origin2000 system for this September 1997

result included 32 processors, 8GB of main memory, and 559 4GB disks:

¥ 1 system disk

¥ a 280-disk XLV volume for input and output Þles

¥ 278 temporary disks

Nsort read a terabyte input Þle from the 280-disk Þle system, partially sorted the data and wrote it to the

temporary disks. The partially sorted data was then read from the temporary Þles and merged to

produce a 1-terabyte output Þle. To save on disk space, the input Þle was overwritten to produce the

output Þle.

Note that the 110 MB/sec speed of the terabyte sort was not much lower than the 127 MB/sec speed of

the two-pass MinuteSort, even though more than two orders of magnitude more data was sorted. Fairly

uniform performance can be expected for two-pass sorts with data sizes between 1 gigabyte and 1

terabyte. For MinuteSort-type records, this is a consistent sort rate of more than a million records per

second.

Competitive Comparison

The following bar chart compares the sort rates for the Nsort terabyte sort, Nsort two-pass MinuteSort,

the latest Nsort one-pass MinuteSort, and Syncsort world record. Also included is a 1.76 MB/sec sort

rate (1GB sorted in 567 seconds) for the standard Unix sort program measured on an Origin2000 in 1997.

Copying

In addition to sorting, Nsort can perform Þle copying at very high speeds. Nsort has copied a 100GB Þle

with the following rates:

¥ 1050 MB/sec copying from one 280-disk Þle system to another 280-disk Þle system

¥ 940 MB/sec copying within a single, 280-disk Þle system

The copy speeds are illustrated below:

Processor Scaling

To demonstrate Nsort's scalability with multiple processors, we measured the elapsed times for a 2GB

sort with increasing numbers of R10000 processors. For each sort, the elapsed time, the sort rate (MBs

sorted per elapsed second), and the speedup (multiple processor efÞciency relative to a single processor)

were measured. The following table and graph show these results. The speedup from one processor to

four is nearly linear, beyond four processors the speedup is still impressive. This shows that Nsort

performance can be dramatically increased by using additional processors.

Sort Speed (MBs sorted / elapsed second)

Nsort, SGI Origin
Terabyte Sort

Nsort, SGI Origin
Two-Pass MinuteSort

Nsort, SGI Origin
One-Pass MinuteSort

Syncsort,
DEC AlphaServer

Unix Sort,
SGI Origin

Nsort, Syncsort and Unix Sort

0 50 100 150 200

110

127

206

13.2

1.76

0 200 400 600 800 1000

1050

940

Nsort Copy Speeds

2 File Systems

1 File System

Speed (MBs copied / elapsed second)

Size of Sort Data

The sort rate can vary depending on the size of the data sorted. The following table presents the sort

rates for a variety of data sizes. Each sort was done with 8 R10000 processors, and used 100-byte records

with random keys. For each case the three following results are shown:

For the small sorts, the startup and shutdown times for Nsort prevent the higher sort rates seen with

larger sorts. If the input data cannot Þt in main memory, a two-pass sort must be done (runs of sorted

records are written to temporary disks then read back as they are merged and written to the output Þle).

Origin2000 Nsort Results for 2GB, One-Pass Sorts

Processors 1 2 4 8 14

Elapsed Seconds 172 93 48 31 21

Sort Rate 12 22 43 66 98

Speedup 1 1.8 3.6 5.5 8.2

elapsed seconds
sort rate (MBs sorted per elapsed second)

Nsort memory usage (MBs)

Sort Times, Rates and Memory Usage for a Variety of Sort Sizes

Number of Records 100k 200k 400k 1m 2m 4m 10m 20m
100
m

200
m

Sort Size (Bytes) 10m 20m 40m
100
m

200
m

400
m

1g 2g 10g 20g

One-Pass 1.0
10
111

1.3
15
113

1.6
25
140

2.2
45
222

3.2
63
335

5.5
73
573

12.8
78
1259

26.5
76
2432

Two-Pass 227
44
225

429
47
295

B

B

B

B

B

0

1

2

3

4

5

6

7

8

9

1 2 4 8 14
Number of Processors

Speedup

Nsort Processor Scaling

Two-pass sorts are slower than one-pass sorts because they require more CPU use and twice the disk

bandwidth, although they require much less main memory.

Key Types

All Nsort performance data presented so far used a single 10-byte character key containing random data.

Performance data for a variety of key types will now be presented:

character

a series of ascii characters or unsigned binary 1-byte integers

integer

a signed binary number

ßoating

an IEEE ßoating point number

decimal

a decimal number represented as a series of ascii digits

For each key type, both 4 and 8 byte key lengths were tested. In all cases 10 million 100-byte records were

sorted with one R10000 processor. Only one disk was available for these tests. The elapsed times of the

sorts were all identical (bound by the speed of the disk), so the Nsort processor times are presented

instead. (All tests presented so far have measured elapsed time.)

The above table shows the character, binary and ßoating key types all yield similar performance, either

with 4-byte or 8-byte keys. This is because the keys contained randomly generated data, only the Þrst 4

bytes of each key needed to be examined to resolve comparisons. Indeed the key length is almost

irrelevant for random data. For longer keys, performance is a function of the distribution of the key data.

Worst-case key distributions will be examined in the next section.

The key length of decimal data is relevant, even with random data. This is because Nsort must translate

the ascii representation of the key into binary. As the length of a decimal key grows, it both takes longer

to translate each key and increases the number of key translations that must be done.

Record and Key Length, Key Distribution, and Number of Keys

In this section we will examine Nsort single-process performance as a function of record length, key

distribution, and number of keys. The following record sizes and corresponding input sizes were tested:

For each record length, character keys of lengths of 4, 8, 20, 40, 100, 200 and 400 bytes were tested (as

Key Type Key Bytes CPU Seconds

character 4
8

74
73

binary 4
8

74
74

floating 4
8

75
75

decimal 4
8

77
122

Record Size 4 8 20 40 100 200 400

Sort Size 256MB 512MB 640MB 800MB 1000MB 1200MB 1200MB

Number of Records 64m 64m 32m 20m 10m 6m 3m

permitted by the size of the record). For each key length the worst-case key distribution was used. These

key distributions force Nsort to examine all key bytes during the sort.

There are two internal methods Nsort uses to sort records, record sort and pointer sort. Both methods

were used in the tests. With a record sort, records are moved in Nsort process memory in order to bring

the records into sorted order. Record sorts tend to work best for short records (less than 32 bytes). With a

pointer sort, a pointer to the record is moved inside Nsort process memory many times in order to

arrange the records in sorted order. The record itself is copied only once for a one-pass sort, and twice for

a two-pass sort. Pointer sorts tend to work better for longer records (longer than 32 bytes).

 All of the sorts were one-pass sorts, used character keys, and were performed with one R10000

processor. As only one disk was available at the time of the tests, Nsort CPU times (not elapsed times)

were used to calculate sort rates (Megabytes sorted per CPU second).

Both single keys and multiple keys were tested. The tests for single character-keys of varying lengths are

now given. Record sort results are presented for record lengths of 40 bytes and lower. Pointer sort are

presented for record lengths of 20 bytes and higher.

Worst-Case, Single Character-Key Sort Rates (MBs Sorted / CPU Time)

Sort Type Key Bytes Record Bytes

4 8 20 40 100 200 400

Record 4
8
20
40

1.1 1.9
1.7

4.0
3.7
3.1

5.2
5.1
4.4
3.9

Pointer 4
8
20
40
100
200
400

3.8
3.1
1.9

7.1
5.8
3.6
3.0

13.3
11.4
7.9
6.6
5.5

18.8
16.8
12.6
10.8
9.2
7.8

25.5
23.4
19.0
17.0
15.0
13.1
10.3

The primary trend of the above data is that the sort rate increases as the record size increases. The

secondary trend is the sort rate decreases as the length of the key increases. The worst-case degradation

is a factor of 2.5 as the length of the key increases from 4 bytes to 400 bytes.

Pointer and record sorts can be compared for the 20- and 40-byte record tests. Record sorts are always

faster for 20-byte records. With 40-byte records, pointer sorts provide the best and worst sort rates,

depending on the key size. This is because the longer key lengths cause additional cache misses with

pointer sorts. Whereas with record sorts there are no additional cache misses with the longer keys.

Not all sorts in the real world use a single key. The results of using multiple 4-byte character keys are

now presented. These tests use the same number of key bytes as the single character-key tests, but

broken into separate 4-byte keys. For instance, instead of a single 20-byte key, 5 4-byte keys are used. As

demonstrated in the Key Types section, the worst case for multiple 4-byte integer or ßoating keys should

be similar to these character-key results.

B

B

B

B

B

B

B

B

B

B

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

1

10

30
4-byte Key
8-byte Key

20-byte Key
40-byte Key
100-byte Key
200-byte Key

400-byte Key

4-byte Key

8-byte Key

20-byte Key

40-byte Key

4 8 20 40 100 200 400

Record Sorts

Pointer Sorts

Sort Rate (MB's sorted / CPU time)

Record Size (Bytes)

Worst-Case, Single Character-Key Sort Rates

20

8

6

4

2

The use of multiple short keys instead of one large key causes Nsort to use additional CPU time and

degrades the sort rate somewhat. These results are similar to the single key tests, with slightly worse

degradation (a factor of 3.5 in the worst case). The primary and secondary trends observed in the single-

key tests are still present:

¥ the sort rate increases with the record size

¥ the rate decreases as the number of keys increases

Worst-Case, Multiple Character-Key Sort Rates (MBs Sorted / CPU Time)

Sort Type Key Bytes Record Bytes

4 8 20 40 100 200 400

Record 4
8
20
40

1.1 1.9
1.5

4.0
3.4
2.0

5.2
4.9
3.6
2.7

Pointer 4
8
20
40
100
200
400

3.8
2.8
1.6

7.1
5.3
3.2
2.5

13.3
10.9
6.9
5.6
4.3

18.8
15.9
11.3
9.4
7.5
5.8

25.5
22.8
17.5
15.3
12.7
10.3
7.3

B

B

B

B

B

B

B

B

B

B

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

1

10

30
1 4-byte Key
2 4-byte Keys

5 4-byte Keys
10 4-byte Keys

25 4-byte Keys

50 4-byte Keys

100 4-byte Keys

1 4-byte Key

2 4-byte Keys

5 4-byte Keys

10 4-byte Keys

4 8 20 40 100 200 400

Record Sorts

Pointer Sorts

Sort Rate (MB's sorted / CPU time)

Record Size (Bytes)

Worst-Case, Multiple Character-Key Sort Rates

20

8

6

4

2

Importantly, there are no order-of-magnitude dropoffs in performance for non-random data as one

would Þnd in Indy MinuteSort programs. This is the kind of sound performance one expects from a

commercial sorting program.

Conclusion

The Nsort program provides breakthrough speeds for commercial sorting. Its ability to access single Þles

at high speeds, use 64-bit addressing, and scale performance with multiple processors make it the

superior choice among commercial sorting programs.

Availability

Nsort is available now for SGI Origin and Sun Solaris servers. For pricing on IRIX, contact SGI, http://

www.sgi.com. For pricing on Solaris, contact Ordinal. More information about Nsort can be found online

at http://www.ordinal.com.

DFSORT is a trademark of IBM Corporation.
IRIX is a trademark of Silicon Graphics, Inc.
Nsort is a trademark of Ordinal Technology Corp.
Ordinal is a trademark of Ordinal Technology Corp.
Syncsort is a registered trademark of Syncsort Corporation.
Solaris is a registered trademark of Sun Microsystems, Inc.
HP-UX is a registered trademark of Hewlett-Packard Company.
Unix is a registered trademark of X/Open Company Limited.

Please send comments about this paper to documentation@ordinal.com.

References

 [1] Knuth, D.E., The Art of Computer Programming, Vol. 3, Addison-Wesley, Reading, MA, 1973.

 [2] Kimball, R., The Data Warehouse Toolkit, John Wiley & Sons, New York, 1996, p. 222.

 [3] Nyberg, C., T. Barclay, Z. Cvetanovic, J. Gray, D. Lomet, "AlphaSort: A RISC Machine Sort",
Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data,
Minneapolis, MN, 1994.

 [4] Syncsort and Digital Equipment Corp., "SyncSort Announces World Record Set on Digital's
AlphaServer System", Press Release, October 1, 1996.

